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This paper presents a path planner for sensing closely-spaced targets from a fixed-wing
unmanned air vehicle (UAV) having a specified sensor footprint. The planner is based on the
learning real-time A∗ (LRTA∗) search algorithm and produces dynamically feasible paths
that accomplish the sensing objectives in the shortest possible distance. A tree of candidate
paths that span the area of interest is created by assembling primitive turn and straight
sections of a specified step size in a sequential fashion from the starting position of the UAV.
An LRTA∗ search of the tree produces feasible paths any time during its execution and
minimum length paths if run to completion. The running time and path-length performance
of the search are directly influenced by the operating parameters of the LRTA∗ algorithm.
To improve the running time of the planner, a modified LRTA∗ search that terminates when
there is no improvement in the path for a predefined number of iterations is implemented.
The result is a path planner that produces short-distance paths in acceptably short running
times.

I. Introduction

PATH planning is an essential activity for mobile autonomous vehicles. For autonomous fixed-wing aircraft, the
path-planning problem is particularly difficult because the dynamic limitations of the aircraft, such as minimum

turning radius, must be considered during the path-planning process. Aerial sensing of ground based targets adds
further difficulty to the problem by requiring the footprint of a downward-looking sensor to pass over a group of targets.
The path-planning process must not only consider the aircraft dynamics, but also the movement of the sensor footprint
as the aircraft follows a specified path. If the targets are located far apart with respect to the minimum turning radius
of the vehicle, then the path-planning approach is straightforward.1,2 When the targets are close together, however,
traditional path-planning approaches are not well suited for producing paths that effectively utilize the vehicle’s
sensor footprint.

The problem of focus for this work is to develop a path-planning method for sensing a group of closely-spaced
targets that fully utilizes the planning flexibility provided by the sensor footprint, while operating within the dynamic
constraints of the aircraft. The path planning objective is to minimize the path length required to view all of the
targets. This problem is illustrated in Figure 1 where there are three targets. In addressing problems of this nature,
three technical challenges must be addressed: coupling between path segments, utilization of the sensor footprint,
and determination of the viewing order of the targets. Each of these challenges will be briefly discussed.

A standard approach for planning paths is to plan path segments that are optimal from one point to another. For
multiple targets, the approach involves planning an optimal path from the starting point to the first target, from the
first target to the second target, and so on, until all targets are visited. If targets are widely spaced relative to the turning
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Fig. 1 Schematic of three-target sensing problem.

capabilities of the vehicle, then this approach works well provided that the optimal visit order can be specified. If
targets are closely spaced, then coupling between the path segments due to the dynamic limitations of the vehicle
can result in a poor outcome for the composite path. The negative effect of this coupling is illustrated in Figure 2(a)
where an optimal path is planned to the first target. The heading of the vehicle as it flies over the first target puts it
in a poor position to view the second target. Similar coupling exists between the second and third segments of the
path. Although segments two and three are also optimal with respect to their initial position and heading and final
position, the composite path is clearly suboptimal. Figure 2(b) illustrates the optimal multi-target path. Clearly the
path segment from the initial position to the first target is longer than the myopic optimal segment in (a), but at the
completion of the first segment, the vehicle is well situated to view the subsequent targets leading to a minimum path
length for viewing all the targets.

Fig. 2 Coupling between path segments.
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Most path planning approaches produce paths that pass directly over the targets of interest. These approaches are
unnecessarily restrictive. Many downward looking sensors (e.g., EO video, SAR, LADAR) utilized by UAVs have
sensor footprints of significant size. Viewing a target typically does not require flying directly over the top of it, thus
the direct fly-over restrictions imposed by most path planners do not utilize the range and flexibility provided by
the sensor footprint. The benefit of being able to utilize the sensor footprint when viewing closely spaced targets
is clearly demonstrated in Figure 3. While having a sensor with a significant footprint size is beneficial, utilizing it
increases the complexity of path planning considerably.

A final challenge when viewing targets in close proximity is to determine the viewing order. The task of determining
the viewing order is similar to the traveling salesman problem (TSP),3 which is known to be NP hard. In addition to
determining the viewing order, the path planning problems considered here have the added complexity of a limited
turn radius and a sensor footprint to exploit. Because of the difficulty of this problem, this work will only consider
constant altitude, constant velocity flight with a downward looking sensor.

An effective path planning approach for viewing closely-spaced targets from a UAV requires a planner with the
following capabilities:

• Plans optimal or near-optimal paths through multiple targets by overcoming the effects of coupling between
path segments

• Utilizes fully the sensor footprint to view targets, thus eliminating the need to fly directly over them
• Determines the viewing order of targets yielding minimum-length paths.
By utilizing a novel implementation of the learning real-time A∗ search, a path planner has been developed that

meets these technical requirements and approximates optimal paths. The path planner requires only a list of targets
as input and automatically provides the order and times in which the targets should be visited. The algorithm can be
extended to accommodate any sensor-footprint geometry or additional constraints and goals for the path.

Trajectory planning for vehicle systems and mobile robots has been an area of active research for decades. Much
of the early work in optimal control centered around the planning of optimal trajectories for aerospace systems.4 Path
planning for robotic systems has been the focus of significant attention resulting in the development of numerous
techniques.5 Most of the methods developed treat the situation where a start state and end state have been defined and
the objective is to plan a path between them. This paper treats a different scenario where the end state is unspecified,
but the UAV must pass within the vicinity of several targets for viewing.

This work draws ideas from several different types of path-planning approaches. Dubins2 proves that the minimum-
length, curvature-constrained path connecting some initial and final position with specified initial and final headings

Fig. 3 Path shortening benefit of properly utilized sensor footprint.
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will consist of a turn, followed by a straight segment, followed by a turn. Turns are made at the minimum turning
radius of the vehicle. The traveling salesman problem for a Dubins’ vehicle (i.e., a vehicle constrained to move
forward along paths of bounded curvature) has been investigated by Savla et al.,6 They develop an algorithm that
builds on the optimal solution of the TSP to produce a sub-optimal Dubins’TSP tour with bounded worst-case length.
Richards et al., have presented a hybridA∗/automaton approach to online UAV path planning that also utilizes Dubins
vehicle turn primitives.7

Yang and Kapila use the concept of Dubins paths and vector calculus to pose multiple-target path planning as a
parameter-optimization problem.8 Their algorithm maintains the vehicle’s dynamic constraints, as well as considering
various tactical constraints. The resulting path is optimal, but requires the order in which the targets are to be visited
to be specified prior to calculating the path. Caveney and Hedrick treat the closely-spaced target problem addressed
in this paper, but pursue a different approach.9 Their objective was not to plan a continuous path through the targets,
but rather to determine target groupings to facilitate efficient viewing of the targets.

Naturally occurring potential fields have motivated the research of potential-field based path-planning methods.
These methods can produce good results, but are inherently problematic,10 and therefore not entirely successful in
solving the path-planning problem. McLain and Beard present a potential-force based method for cooperative path
planning of UAVs.11 The path is treated as a chain made of discrete segments which are repulsed by the threats. The
segments are also repulsed by each other to smooth the path and make it flyable. Unfortunately, this approach is too
slow for real-time path planning.

Frazzoli et al.,12 develop a real-time randomized path-planning algorithm that maintains the dynamic constraints
of the vehicle. The algorithm, however, considers the path to only one target. This approach could be adapted for
use in planning a path that visits multiple targets. A related area of path-planning research is that of randomized
probabilistic search, also known as probability road mapping (PRM).13,14 PRM randomly selects configurations from
the configuration space, and plans local paths to those configurations. After randomly searching for some time, a road
map can be constructed that can be searched for the shortest path to the goal. The underlying idea of PRM is that the
probability of finding the optimal path will converge to one as the time spent building the road map goes to infinity.
More importantly for real-time applications, PRM methods demonstrate rapid convergence to feasible solutions.

Related to probability road maps are rapidly-exploring random trees (RRTs).15 By randomly selecting points in
the search space, a tree of dynamically feasible nodes can be constructed. The tree is grown until the goal state is
reached. By keeping track of the control inputs required to move between nodes, an open-loop control input sequence
to move from the start node to the goal node can be found. Lavalle and Kuffner have developed several variations to
the RRT algorithm to improve search speed.16 Saunders et al., have implemented a version of the RRT algorithm to
plan 3-D waypoint paths for small UAVs, and have successfully used the algorithm in simulation and flight tests.17

The planning of paths for UAVs operating as sensor platforms has been treated by Rysdyk.18 This work simulates
paths that maintain a constant line-of-sight with a ground-based target from a fixed-wing UAV. Camera gimbal control
is discussed, but the emphasis is on UAV path planning.

Path-planning techniques using Mixed Integer Linear Programming (MILP) have been developed for aircraft
applications.19–21 MILP methods are capable of producing collision free paths between starting and ending states, but
require specialized software for solving the MILP optimization problem. MILP methods are well suited to problems
addressing task assignment and path planning simultaneously. Evolutionary algorithms for UAV path planning have
been explored by Jia and Vagners.22 Problems with premature convergence were addressed by creating a framework
of parallel evolutionary algorithms in which several populations evolve simultaneously and compete with one another.
The real-time heuristic search23 has been the basis for many path planning and other intelligent-search algorithms.24,25

There has been a great deal of effort expended in increasing the speed and efficiency of the real-time search.26–28

The text by Weiss,29 provides an overview of the literature concerning real-time search and the learning real-time A∗

algorithm.

II. Discrete-Step Paths
A successful path-planning algorithm should produce a type of path that is not constrained by end points or

headings, that utilizes the full capability of the vehicle’s sensors, and that satisfies the dynamic constraints on the
vehicle. These capabilities can be provided by discrete-step paths, which are built by assembling primitive turn and
straight segments to form a flyable path. The choice of which primitive to use at each step is driven not by getting from
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Fig. 4 Primitive turn and straight segments assembled to form a tree of flyable paths.

point A to point B, but instead by meeting a set of specific objectives for the path, such as sensing a group of targets.
For this work, each primitive segment in a discrete-step path is of a specified length, dS, and is either a turn, made at
the minimum turning radius of the vehicle, or a straight line (thus following the Dubins path concept). Normalizing
dS by the minimum turning radius Rt gives the vehicle’s maximum heading change at each step: dψ = dS/Rt . Since
the step size is constant for each primitive, the number of steps in a path is given by N = Pn/dψ , where Pn is the
normalized path length Pn = P/Rt . Assembling the left turn, right turn, and straight primitives creates a tree of
flyable paths as shown in Figure 4. Thus, the objective for the path planner is to search the path tree for the branch
that accomplishes the desired objectives in the shortest distance. Nodes in the path tree have a parent node, A, and
a set of child nodes, C. Each node also has a record of the targets that have been sensed by its ancestors, which are
denoted by the set S. The set of known targets is denoted as T .

The path tree represented in Figure 4 has a depth of three. It is intuitively clear that shorter step lengths increase
the resolution of the path tree and that deeper trees allow paths of greater length, increasing the coverage area of
the tree. Given that the number of nodes in a tree grows exponentially with the depth of the tree, there are practical
limitations to tree depth imposed by computer memory limits. As step length and tree depth significantly influence
the speed of the path planning tree search and quality of the resulting path plan, their role will be investigated further
in Section III, which details the tree search. In considering the construction of the path tree, the simplest approach

Fig. 5 Notation for the path-planning problem.
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Fig. 6 Geometry of nodes in the path tree.

is to generate a fixed-depth tree that utilizes the existing computer memory resources. For desktop computers used
currently, tree depths between 30 and 50 can be implemented feasibly.

The position and attitude of the vehicle are characterized using standard aircraft notation, as shown in Figure 5.
The configuration of the vehicle at a node is given by the triplet P = (x, y, ψ), where x and y represent the inertial
position, and ψ is the heading of the vehicle measured from the North. The vector from the vehicle to the ith target
is denoted as di .

The configuration of a child node is determined by calculating the change in heading and position relative to the
parent configuration, as shown in Figure 6. The equations for calculating the child configurations, Pl , Ps , Pr , are
provided below.

c = Rt

√
2(1 − cos(dψ))

Pl = P0 +




c sin(ψ0 − 0.5dψ)

c cos(ψ0 − 0.5dψ)

−dψ





Ps = P0 +




dS sin(ψ0)

dS cos(ψ0)

0





Pr = P0 +




c sin(ψ0 + 0.5dψ)

c cos(ψ0 + 0.5dψ)

dψ





Targets are sensed by the vehicle whenever they are inside the vehicle’s sensor footprint. The algorithm presented
can accommodate sensor footprints of arbitrary size and shape. For this work, the sensor footprint is rectangular
with xsensor = 1.2Rt and ysensor = 0.5Rt , and its center is located directly beneath the vehicle∗ . The discrete-step
paths described and implemented are limited to two dimensions to reduce computational complexity. The concepts of
building discrete-step path trees and searching them, as described subsequently, can be extended to three dimensions
in a straightforward manner.

III. LRTA∗ Tree Search
This work applies the learning real-time A∗ (LRTA∗) algorithm in a novel way to learn which branch of a defined

path tree best accomplishes the desired path planning objectives. The LRTA∗ algorithm is well established, but has
typically been applied to path-planning problems in grid based worlds29. In general, the LRTA∗ algorithm may be
applied to any type of world: grid, tree, directed graph, or other. The LRTA∗ algorithm is chosen over the faster A∗

algorithm because the limiting factor on the performance of the path-planner is the memory space required to store
the expanded nodes. By using LRTA∗, execution speed is sacrificed to reduce the spatial complexity of the search.

∗ The sensor footprint size relative to the turn radius is based on the capabilities of a specific vehicle known as a Low Cost
Autonomous Attack System (LOCAAS).
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Algorithm Details
The LRTA∗ algorithm itself is simple and elegant. Each node has a heuristic estimate, h, of the remaining distance

that must be traveled to complete the unfinished objectives. At each step of the search, the current node calculates
fc = kc + hc ∀ c ∈ C, where hc is the child’s heuristic estimate, and kc is the cost of moving to the respective child.
In other words, fc is the estimated remaining travel distance if a move were to be made to child c. The current node
updates its heuristic value with h = minc∈C fc, and then moves to the corresponding child. The search continues to
move down the tree until either all the objectives are accomplished, or the path becomes longer than the current best
path, at which point the search begins again from the root node. At each step of the search, the heuristic value for
the current node is updated with a better estimate of the distance to the goal, and after some number of iterations,
the updated heuristics converge to the actual path lengths. At this point the search has learned the minimum-length
path that accomplishes the desired objectives. In other words, when h∗

0 − h0 = 0, where h∗
0 is the actual path length

from the root node, then the search has found the optimal path. The LRTA∗ tree search algorithm is outlined in
Algorithm 1, where "htotal is the total heuristic change for the current run, count is the length of the current path,
bestcount is the length of the best path found thus far, and allSensed indicates whether all the targets have been
sensed.

Algorithm 1: LRTA∗ Tree Search
Input: Set of targets T , Initial configuration P0 = (x0, y0, ψ0)

Output: End node of the path branch
LRTA(T , P0)
(1) while "htotal > 0
(2) P = P0

(3) while count < bestcount & !allSensed

(4) fc = hc + dS ∀ c ∈ C
(5) h ← minc∈C fc

(6) P = arg minc∈C fc

(7) count = count + 1
(8) if count < bestcount

(9) bestcount = count

It should be noted that the algorithm described above only allows moves to children. It is feasible to move back up
the tree to a node’s parent and continue the search from there, as in the traditional A∗ search, but doing so results in
large portions of the tree being explored without finding a better path. It is more efficient to continue down a branch
until either all the objectives are complete, or the branch is terminated for some other reason, and then start the next
search iteration at the root node. Doing so allows the search to explore different parts of the tree to find a better path,
instead of staying in just one area.

Initial Heuristic
The primary requirement of the LRTA∗ search is that hi ≤ h∗

i is always true for any node i. The reason for this
requirement is simple: if a node on the optimal path overestimates the distance to the goal, the search may never
move to that node and hence never find the optimal path. Heuristics that conservatively estimate the true path length
are termed admissible heuristics29 and the calculation of appropriate initial values for these heuristics is essential
to the performance of the LRTA∗ search. It would be permissible to initialize the heuristics to zero, but the search
would require a long time to learn the optimal path. Therefore, the initial heuristic estimates should be as high as
possible while still guaranteeing that they are admissible.

Heuristics in the LRTA∗ tree-search problem are estimates of the distance that must be traveled from the current
node to complete the remaining tasks. The simplest method for calculating heuristics is to use the distance to the
furthest target as the initial heuristic value since we know the vehicle must travel at least that far to complete its
objectives. As shown in the left of Figure 7(a), however, the vehicle can swing the sensor around to the target by
making a turn, and thus the vehicle need not go completely to the target. Since it is impossible to determine when
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Fig. 7 Calculation of initial heuristics.

this can be done, the approximation illustrated in the right of the figure is used and the initial heuristic value is
calculated as

h = max
i

‖di‖ − ysensor

2
.

These initial heuristic values are guaranteed to be admissible, but are not necessarily very close to the actual path
length, and therefore the search may converge slowly.

An alternative initial heuristic value is to find the distance to the target closest to the vehicle, and then add the
distance to the target furthest from this first target, as is illustrated in Figure 7(b). To guarantee that the heuristic is
admissible, one-half the sensor width is subtracted from the distance to the nearest target, and the full sensor width
is subtracted from the second distance. The discrete nature of the path tree must also be accounted for, and so, to be
conservative, the step size is subtracted from the first segment and twice the step size is subtracted from the second
segment. The resulting heuristic is

h = min
i

‖di‖ + max
j

‖tj‖ − 3
2
ysensor − 3 dS

where tj are the vectors from the nearest target to the other targets. These initial heuristic values are guaranteed to
be admissible, and they provide better path-length estimates than the previous method. This method is used by the
LRTA∗ algorithm.

Terminating Conditions
The method used to terminate the tree search directly affects the speed and path-length performance of the tree

search. On one extreme the search runs until the heuristic change is zero, thus guaranteeing that the minimum-length
path has been found, but possibly requiring a significant amount of running time. On the other extreme the search runs
until a maximum running time is reached, thus guaranteeing termination by a certain time, but with the resulting path
possibly being far from optimal. Neither of these extremes is very attractive for the path-planning problem. These
two extremes, however, may be combined to create a terminating condition that encourages continual improvement
of the path length, while providing the ability to terminate the algorithm if no improvement is being made. This
condition is to stop the search after there has been no improvement in the path length for some specified number of
iterations. In other words, the search continues as long as the path length is improving, with the trade off between
speed and path-length performance being controlled by the number of non-improving iterations that must lapse before
termination. The more iterations that are required, the better the resulting path lengths may be, but with increased
running time. This terminating condition is successful because the optimal path is typically found fairly quickly and
the majority of the search time is spent confirming that it is indeed the optimum. The tree search algorithm with this
terminating condition is referred to as the Non-Improving LRTA∗, or NILRTA∗ algorithm. The NILRTA∗ algorithm
terminates when there is no improvement in path length, whereas the LRTA∗ algorithm terminates when there is
no improvement in the heuristic estimate. Figure 8 shows sample paths generated by the LRTA∗ and NILRTA∗

algorithms for the same test conditions.
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Fig. 8 Sample paths generated by the LRTA∗ and NILRTA∗ algorithms.

Branch Terminals
Memory management and pruning of the path tree are essential to good performance of the LRTA∗ tree search.

When the currently-explored branch becomes longer than the present best path, the current node is terminated by
deleting its children and setting its heuristic value to infinity and the search is restarted at the root node. If a node’s
children all have heuristic values of infinity, then the node is a dead-end and it can be terminated similarly. Also,
since the heuristic value of a node is always less than or equal to the actual path length, the heuristic can be used to
cull nodes from the tree. If at a given node, h + count dS > bestcount dS, where count is the current depth in the
tree and bestcount is the number of nodes in the currently known best path, then all paths extending from that node
are longer than the best path. Therefore the node and all its children can be safely terminated.

Path Tree Size
A significant problem with searching the path tree is the size of the tree. As the step size decreases, the size of

the tree increases very quickly, which makes exploring the tree a lengthy process. The full path tree has a size of
3d , where d is the number of levels in the tree. This means that for a tree with 30 levels, there are approximately
3.1 × 1014 nodes. Although the search will not need to explore all the nodes, there will be a large number that must
be evaluated, meaning the search will be slow, and require a lot of memory space to store the visited nodes.

One method for decreasing the size of the path tree is to prune out branches that result in paths that frequently
switch directions. For example, if a right turn has been made, there is no point in making a left turn on the next step if
the step size is reasonably small. Therefore, after a turn has been made, the only choices are to go straight or to turn
in the same direction again. This look-back may be extended to consider the last n moves, thus effectively reducing
the size and complexity of the tree. An example tree structure with a two-step look-back is shown in Figure 9. For a
tree with thirty levels, the size of the tree is 5.42 × 1010 nodes, which is less than 0.02 percent of the size of the full
path tree. Pruning the tree in this manner is particularly helpful when using small step sizes. For larger step sizes,
it is permissible to allow the turn direction to change between segments, and thus the full path-tree structure may
be used.

The most effective means of limiting the size of the path tree is to limit the depth of the tree before the search
begins. This may be done by setting some maximum depth that is used in every problem. A more efficient approach,
however, is to precede the LRTA∗ tree search with some other path-planning method that provides a flyable path
that accomplishes the desired objectives, but not necessarily in an optimal manner. Based on the length of this initial
feasible path and the step size, a suitable tree depth for the particular scenario can be established. In addition to
providing a maximum tree depth that is suited to the particular problem, the initial feasible path provides the ability
to terminate the tree search at any time and still have a feasible path that accomplishes the desired objectives.
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Fig. 9 Two-step look-back tree structure. Previous two moves limit possible next moves.

For this research, the LRTA∗ tree search is initiated using the results of a single-source potential-field path
planning algorithm1. Using this method, the target closest to the vehicle is chosen as the source and the potential
field algorithm plans a path to that target. Once the first target is reached, the next nearest target is selected as
the source. This procedure continues until all targets have been visited. Although the resulting path is suboptimal,
this method reliably produces a feasible initial path for the LRTA∗ algorithm. Starting with this initial path, the
LRTA∗ algorithm finds the optimal minimum-length path through the targets. In finding the optimal path, the LRTA∗

algorithm determines the best tour order, which is often different from the order of the path used to initialize the
LRTA∗ search.

One advantage of the LRTA∗ algorithm is that additional goals and constraints can easily be imposed on the path.
Such constraints may include viewing a target from a specified heading or range of headings, or avoiding a known
obstacle or no-fly zone. Implementing additional goals and constraints is simply a matter of identifying and pruning
infeasible branches during the LRTA∗ tree search. Avoidance of unknown obstacles that are sensed during flight
would require augmentation of the LRTA∗ planner with reactive capabilities. Simple Dubins paths could form the
basis for real-time avoidance maneuvers that would momentarily take the vehicle off the LRTA∗ path to avoid the
obstacle.

Step Size Selection
The LRTA∗ tree search is guaranteed to find the minimum-length path from the discrete-step path tree. This path

is not necessarily the globally optimal path, but a discrete approximation to the optimal path. In theory, if the step
size in the LRTA∗ tree search were decreased to be infinitesimally small, then the true global optimum would be
found. Unfortunately this is not possible in practice because the tree size would be too large to search effectively.
The key to making the LRTA∗ tree search work well, is choosing a step size that is small enough to best approximate
the global optimum, but without making the tree too large to search quickly. Results from this work show that a trade
off must be made between speed and path-length performance when selecting a step size, and that larger step sizes
greatly improve the running time of the algorithm with only a slight increase in the resulting path lengths.

In its present implementation, the LRTA∗ path planner operates with a fixed step size, dS. Based on an initial
feasible path length and this fixed step size, a maximum tree depth is determined. This approach minimizes the
computational complexity by limiting the size of the tree. An alternative approach that would provide paths of
increased resolution and possible shorter lengths would be to fix the depth of the tree at the maximum value within
the capability of the computer. From this maximum depth and the initial feasible path length, a minimum feasible
step size could be determined for building the path tree. Approaches to adapt the step size based on the density of
the targets in close proximity could allow larger areas to be searched with greater efficiency.

IV. Testing and Comparison
The LRTA∗ and NILRTA∗ algorithms were tested on a set of 2000 target scenarios generated from a 2Rt by 2Rt

world. Each scenario included three randomly-selected targets and a random initial position and heading for the
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vehicle. For heading changes of 0.5 radians and below, a simplified path tree was used that did not include segments
composed of alternating left and right turns. Tests were conducted using an Athlon XP 1500+ (1.33 GHz) processor
with 512 Mb of RAM running the Linux operating system. The running time for the algorithms was limited to one
minute and data from early-terminated runs were used in the analysis. The terminating condition for the NILRTA∗

algorithm was 10,000 iterations of no improvement.
The step size used for the discrete-step path tree directly influences the running time and path-length performance

of the LRTA∗ tree-search algorithms. It can be shown that increasing the step size significantly reduces the running
time of the algorithm with only a moderate increase in the resulting path lengths. Furthermore, algorithm testing has
demonstrated that using step sizes below 0.2 radians does not significantly decrease the path lengths produced by
the algorithm. The following tests use step sizes between 0.2 and 0.65 radians, in 0.05 radian increments.

LRTA∗ Tree-Search Validation
To demonstrate the advantages of the LRTA∗ tree search, a comparison was made between the path generated

by the LRTA∗ algorithm and the path found through a brute-force global search based on Dubins paths. The size
of the sensor footprint for the LRTA∗ algorithm was reduced to approximate the vehicle passing through the target
points. Figure 10(a) shows that the LRTA∗ tree search produces approximately the same minimum-length path as
the brute-force global search, with the LRTA∗ path being only 0.5 percent longer. Resetting the sensor to its original
dimensions produced the path shown in Figure 10(b). This path is 33 percent shorter than the path that is constrained
to pass directly over the targets and demonstrates the ability of the LRTA∗ tree-search algorithm to both utilize the
full sensor footprint and to learn the viewing order of the targets.

Path Length
The path-length performance for the two algorithms at the various step sizes is presented in Figure 11. The

mean path length increases approximately 19 percent, over the range of step sizes, indicating that smaller step sizes
are better. The increase in the mean path length between 0.2 and 0.4 radians, however, is only 6.8 percent, which
demonstrates the diminishing utility of using smaller step sizes. The figure also shows that the mean path-length

Fig. 10 LRTA∗ search paths for pin-point and large sensor footprints.
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Fig. 11 Mean path lengths for the two algorithms at various step sizes.

performance of the NILRTA∗ algorithm is comparable to that of the LRTA∗ algorithm.At dψ = 0.2 radians, the mean
NILRTA∗ path lengths are 3.8 percent longer than those for the LRTA∗ algorithm. For step sizes of 0.35 radians and
above, the path lengths resulting from two algorithms are similar. At a step size of 0.5 radians, the algorithms switch
to searching the full path tree instead of the simplified path tree. The path-length performance improves slightly, but
does not provide a significant benefit for increasingly larger step sizes.

Fig. 12 LRTA∗ and NILRTA∗ running time comparison for increasing step sizes.
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Running Times
To present running-time data in a platform-independent fashion, running times for the algorithms are specified

by the number of nodes that are visited by the search. This is not the same as the number of nodes from the path
tree that are expanded, but is the total number of moves made from node to node during the tree search. To provide
a meaningful reference point, running times (in seconds) for the Athlon-based system are listed in parentheses.
Figure 12 presents the running-time results for the LRTA∗ and NILRTA∗ algorithms, with the average total running
times (in terms of nodes visited) for both algorithms at the various step sizes shown in plot (a). At dψ = 0.2 radians,
the average running time of the LRTA∗ algorithm is about 8,000,000 nodes (10 s), and about 150,000 nodes for the
NILRTA∗ algorithm (0.3 s). At a step size of 0.3 radians, the mean running time for the LRTA∗ algorithm drops to
about 200,000 nodes (0.5 s), which is a 98 percent decrease. For the The NILRTA∗ algorithm’s running time drops
by 47 percent to about 80,000 nodes (0.15 s). As the step size continues to increase, the mean running times decrease
further, leveling off at about 7,000 nodes (0.015 s) for both algorithms. For step sizes of 0.4 radians and above, the
two algorithms perform similarly.

The results shown in plot (b) of Figure 12 are the mean running times at which the best paths are found, meaning
that any additional running time is spent confirming the optimum path. For the LRTA∗ algorithm, roughly 85 percent
of the total running time is spent confirming the optimal path. The NILRTA∗ spends about 93 percent of its total
running time processing the 10,000 iterations of no improvement. Thus, if either algorithm is terminated prematurely,
the likelihood of having found the best path is high.

The path-length and running-time results show that increasing the step size improves the running time without
significantly decreasing the path-length performance. The test results also show that the NILRTA∗ algorithm runs
significantly faster than the LRTA∗ algorithm, and has comparable path-length performance. In general, these results
show that there is a trade off to be made between path-length performance and speed: shorter, highly optimized paths
require more time to compute. Also, using the full path tree for larger step sizes does not significantly improve the
path-length performance of the algorithms.

Differing Numbers of Targets
The results presented thus far were all gathered using scenarios with three targets. To test the algorithms’ perfor-

mance for different numbers of targets, two-thousand random target scenarios are used for each number of targets
between one and eight, with a step size for the tests of 0.25 radians.

The running-time results in Figure 13(a) show that the running times for both the LRTA∗ and NILRTA∗ algorithms
increase with the number of targets. For eight targets, the LRTA∗ algorithm visits an average of 5.5 million nodes
(70 s), compared to the NILRTA∗ algorithm which visits an average 200,000 nodes (0.5 s). The NILRTA∗ algorithm

Fig. 13 The effect of increasing target numbers on running time and path length.
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Fig. 14 Path produced by the LRTA∗ algorithm for sensing eight targets.

is consistently faster than the LRTA∗ algorithm for any number of targets, and as shown in Figure 13(b), has path
length performance comparable to the LRTA∗ algorithm. Figure 14 shows an example of a path generated by the
LRTA∗ algorithm for an eight-target scenario. A video of simulated UAV flight over the eight targets can be viewed
by� clicking� here.� The� simulation� models� the� full� six� degree-of-freedom� dynamics� of� a� small� UAV� and� utilizes� a� path
following approach designed specifically for small UAVs.

V. Conclusions
This work presents the LRTA∗ and NILRTA∗ tree-search algorithms, which find the branch from a discrete-step

path tree that best accomplishes a set of desired objectives. The LRTA∗ algorithm is guaranteed to produce the
minimum-length path, but with longer running times. The NILRTA∗ algorithm successfully trades off some path-
length performance for much faster running times. The LRTA∗ and NILRTA∗ algorithms plan optimal or near-optimal
paths through multiple targets by overcoming the effects of coupling between path segments. They fully utilize the
sensor footprint to view targets and eliminate the need to fly directly over them. They also determine the optimal
viewing order as part of the planning process. In this way, both algorithms provide viable solutions to the multiple,
closely-spaced-target sensing problem, along with the flexibility to incorporate a variety of goals and constraints.
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